skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perkins, Russell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 24, 2026
  2. Abstract This study evaluates a popular density current propagation speed equation using a large, novel set of radiosonde and dropsonde observations. Data from pairs of sondes launched inside and outside of cold pools along with the theoretical density current propagation speed equation are used to calculate sonde-based propagation speeds. Radar-/satellite-based propagation speeds, assumed to be the truth, are calculated by manually tracking the propagation of cold pools and correcting for advection due to the background wind. Several results arise from the comparisons of the theoretical sonde-based speeds with the radar-/satellite-based speeds. First, sonde-based and radar-based propagation speeds are strongly correlated for U.S. High Plains cold pools, suggesting the density current propagation speed equation is appropriate for use in midlatitude continental environments. Second, cold pool Froude numbers found in this study are in agreement with previous studies. Third, sonde-based propagation speeds are insensitive to how cold pool depth is defined since the preponderance of negative buoyancy is near the surface in cold pools. Fourth, assuming an infinite channel depth and assuming an incompressible atmosphere when deriving the density current propagation speed equation can increase sonde-based propagation speeds by up to 20% and 11%, respectively. Finally, sonde-based propagation speeds can vary by ∼300% based on where and when the sondes were launched, suggesting submesoscale variability could be a major influence on cold pool propagation. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Abstract. Sea spray aerosols (SSAs) represent one of the most abundant aerosol types on a global scale and have been observed at all altitudes including the upper troposphere. SSA has been explored in recent years as a source of ice-nucleating particles (INPs) in cirrus clouds due to the ubiquity of cirrus clouds and the uncertainties in their radiative forcing. This study expands upon previous works on low-temperature ice nucleation of SSA by investigating the effects of atmospheric aging of SSA and the ice-nucleating activity of newly formed secondary marine aerosols (SMAs) using an oxidation flow reactor. Polydisperse aerosol distributions were generated from a marine aerosol reference tank (MART) filled with 120 L of real or artificial seawater and were dried to very low relative humidity to crystallize the salt constituents of SSA prior to their subsequent freezing, which was measured using a continuous flow diffusion chamber (CFDC). Results show that for primary SSA (pSSA), as well as aged SSA and SMA (aSSA+SMA) at temperatures >220 K, homogeneous conditions (92 %–97 % relative humidity with respect to water – RHw) were required to freeze 1 % of the particles. However, below 220 K, heterogeneous nucleation occurs for both pSSA and aSSA+SMA at much lower RHw, where up to 1 % of the aerosol population freezes between 75 % and 80 % RHw. Similarities between freezing behaviors of the pSSA and aSSA+SMA at all temperatures suggest that the contributions of condensed organics onto the pSSA or alteration of functional groups in pSSA via atmospheric aging did not hinder the major heterogeneous ice nucleation process at these cirrus temperatures, which have previously been shown to be dominated by the crystalline salts. Occurrence of a 1 % frozen fraction of SMA, generated in the absence of primary SSA, was observed at or near water saturation below 220 K, suggesting it is not an effective INP at cirrus temperatures, similar to findings in the literature on other organic aerosols. Thus, any SMA coatings on the pSSA would only decrease the ice nucleation behavior of pSSA if the organic components were able to significantly delay water uptake of the inorganic salts, and apparently this was not the case. Results from this study demonstrate the ability of lofted primary sea spray particles to remain an effective ice nucleator at cirrus temperatures, even after atmospheric aging has occurred over a period of days in the marine boundary layer prior to lofting. We were not able to address aging processes under upper-tropospheric conditions. 
    more » « less
  4. Ice nucleating particles (INPs) in sea spray aerosol (SSA) are important for ice formation in clouds over oceans. We found that SSA INP concentrations during a phytoplankton bloom were degraded with exposure to 3 to 8 days of atmospheric oxidation. 
    more » « less
  5. Oceans emit ice-nucleating particles (INPs) which freeze supercooled cloud droplets, modifying clouds. We added dead biomass of three phytoplankton to seawater. Each time, this stimulated INP production in the water and INP emissions in sea spray. 
    more » « less
  6. null (Ed.)
  7. Abstract The secondary ice process (SIP) is a major microphysical process, which can result in rapid enhancement of ice particle concentration in the presence of preexisting ice. SPICULE was conducted to further investigate the effect of collision–coalescence on the rate of the fragmentation of freezing drop (FFD) SIP mechanism in cumulus congestus clouds. Measurements were conducted over the Great Plains and central United States from two coordinated aircraft, the NSF Gulfstream V (GV) and SPEC Learjet 35A, both equipped with state-of-the-art microphysical instrumentation and vertically pointing W- and Ka-band radars, respectively. The GV primarily targeted measurements of subcloud aerosols with subsequent sampling in warm cloud. Simultaneously, the Learjet performed multiple penetrations of the ascending cumulus congestus (CuCg) cloud top. First primary ice was typically detected at temperatures colder than −10°C, consistent with measured ice nucleating particles. Subsequent production of ice via FFD SIP was strongly related to the concentration of supercooled large drops (SLDs), with diameters from about 0.2 to a few millimeters. The concentration of SLDs is directly linked to the rate of collision–coalescence, which depends primarily on the subcloud aerosol size distribution and cloud-base temperature. SPICULE supports previous observational results showing that FFD SIP efficiency could be deduced from the product of cloud-base temperature and maximum diameter of drops measured ∼300 m above cloud base. However, new measurements with higher concentrations of aerosol and total cloud-base drop concentrations show an attenuating effect on the rate of coalescence. The SPICULE dataset provides rich material for validation of numerical schemes of collision–coalescence and SIP to improve weather prediction simulations 
    more » « less
  8. Abstract Convective clouds play an important role in the Earth’s climate system and are a known source of extreme weather. Gaps in our understanding of convective vertical motions, microphysics, and precipitation across a full range of aerosol and meteorological regimes continue to limit our ability to predict the occurrence and intensity of these cloud systems. Towards improving predictability, the National Science Foundation (NSF) sponsored a large field experiment entitled “Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE).” ESCAPE took place between 30 May - 30 Sept. 2022 in the vicinity of Houston, TX because this area frequently experiences isolated deep convection that interacts with the region's mesoscale circulations and its range of aerosol conditions. ESCAPE focused on collecting observations of isolated deep convection through innovative sampling, and on developing novel analysis techniques. This included the deployment of two research aircraft, the National Research Council of Canada Convair-580 and the Stratton Park Engineering Company Learjet, which combined conducted 24 research flights from 30 May to 17 June. On the ground, three mobile X-band radars, and one mobile Doppler lidar truck equipped with soundings, were deployed from 30 May to 28 June. From 1 August to 30 Sept. 2022, a dual-polarization C-band radar was deployed and operated using a novel, multi-sensor agile adaptive sampling strategy to track the entire lifecycle of isolated convective clouds. Analysis of the ESCAPE observations has already yielded preliminary findings on how aerosols and environmental conditions impact the convective life cycle. 
    more » « less
  9. Abstract The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign included deployment of a suite of atmospheric measurements in January–February 2022 with the goal of better understanding atmospheric processes and pollution under cold and dark conditions in Fairbanks, Alaska. We report on measurements of particle composition, particle size, ice nucleating particle (INP) composition, and INP size during an ice fog period (29 January–3 February). During this period, coarse particulate matter (PM10) concentrations increased by 150% in association with a decrease in air temperature, a stronger temperature inversion, and relatively stagnant conditions. Results also show a 18%–78% decrease in INPs during the ice fog period, indicating that particles had activated into the ice fog via nucleation. Peroxide and heat treatments performed on INPs indicated that, on average, the largest contributions to the INP population were heat‐labile (potentially biological, 63%), organic (31%), then inorganic (likely dust, 6%). Measurements of levoglucosan and bulk and single‐particle composition corroborate the presence of dust and aerosols from combustion sources. Heat‐labile and organic INPs decreased during the peak period of the ice fog, indicating those were preferentially activated, while inorganic INPs increased, suggesting they remained as interstitial INPs. In general, INP concentrations were unexpectedly high in Fairbanks compared to other locations in the Arctic during winter. The fact that these INPs likely facilitated ice fog formation in Fairbanks has implications for other high latitude locations subject to the hazards associated with ice fog. 
    more » « less